课题组长

English

武维华,博士,教授,中国科学院院士

联系电话:86-10-62731103(O)86-10-62731322(L)
E-mail
 whwu@cau.edu.cn   
研究方向:植物钾、磷高效和抗逆(干旱、高盐)机理研究

  
主要研究方向

        磷、钾是植物生长发育所必需的大量元素。由于我国大部分耕地土壤中缺少磷、钾元素,且我国磷钾肥供应又严重短缺,农业生产中磷钾肥供应不足已成为限制我国农业生产的重要因素。本研究组主要开展植物/作物磷、钾营养高效吸收利用的分子机制研究。通过研究植物/作物响应低磷、低钾胁迫的分子遗传调控机制,挖掘植物自身与磷、钾高效吸收利用相关的功能基因,这将有可能为利用现代生物技术改良作物磷、钾营养性状提供理论和技术支撑。

研究方向一:植物钾养分高效的生理及分子遗传机制研究
        植物可以感受外界的低钾胁迫信号,并将这一信号在细胞内进行传递,通过一系列信号转导途径调控钾离子转运蛋白的转录水平或蛋白活性,从而调节植物对钾的吸收、转运和再分配过程,最终使植物耐受低钾胁迫。本小组近年来深入研究了以AKT1为中心的植物响应低钾胁迫的分子调控网络。AKT1是拟南芥根细胞质膜上重要的钾离子通道蛋白,主要介导拟南芥根细胞从环境中吸收钾离子。研究发现AKT1的钾通道活性受到蛋白激酶LKS1/CIPK23、钙结合蛋白CBL1/9/10以及钾通道调节亚基KC1等多种调节因子的控制。这些调节因子形成分子调控网络,精细控制由AKT1介导的植物钾吸收过程。以此为基础,本小组还开展了作物(水稻、玉米)响应低钾胁迫的钾吸收分子机制研究。围绕植物响应低钾胁迫这一生理过程,本小组目前的主要研究内容包括:(1)植物响应低钾胁迫的信号转导过程(2)植物钾离子转运蛋白的分子调控机制研究(3)植物响应低钾胁迫的转录调控机制研究(4)玉米钾养分高效基因的筛选及功能研究。

研究方向二:植物磷养分高效的生理及分子遗传机制研究
        植物能感受外界的磷水平变化,并将感知的信号在细胞内传递,进而调控植物磷的吸收、转运和利用过程,最终实现磷养分高效。围绕植物响应外界磷水平变化的生理过程,本小组目前的主要研究内容包括:(1)在不同外界磷供应水平条件下,植物磷吸收的转录调控机制研究(2)植物磷根冠转运的转录调控及转录后调控机制研究(2)植物感知环境低磷胁迫的信号通路(3)玉米磷高效基因的筛选及功能研究。

发表论文/论著    (*通讯作者)

1.      Ye Q, Wang H, Su T, Wu W-H, Chen YF* (2018) The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low-Pi stress in Arabidopsis. Plant Cell 30:1062-1076.

2.      Gao Y-Q, Wu W-H, Wang Y* (2017) The K+ channel KZM2 is involved in stomatal movement by modulating inward K+ currents in maize guard cells. Plant J. 92:662-675.

3.      Wang Y, Wu W-H* (2017) Regulation of potassium transport and signaling in plants. Curr. Opin. Plant Biol. 39:123-128.

4.      Li H, Yu M, Du X-Q, Wang Z-F, Wu W-H, Quintero FJ, Jin X-H, Li H-D, Wang Y* (2017) NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis. Plant Cell. 29:2016-2026.

5.      Li J, Wu W-H, Wang Y* (2017) Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress. J. Integr. Plant Biol. 59:895-909.

6.      Behera S, Long Y, Schmitz-Thom I, Wang X-P, Zhang C, Li H, Steinhorst L, Manishankar P, Ren X-L, Offenborn JN, Wu W-H, Kudla J*, Wang Y* (2017) Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to K+ deficiency. New Phytol. 213:739-750.

7.      Huang Y, Sun MM, Ye Q, Wu XQ, Wu W-H, Chen YF* (2017) Abscisic acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Pysiol. 175:1661-1668.

8.      Huang Y, Feng CZ, Ye Q, Wu W-H, Chen YF* (2016) Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet. 12: e1005833.

9.      Wang XP, Chen LM, Liu WX, Shen LK, Wang FL, Zhou Y, Zhang Z, Wu W-H, Wang Y* (2016) AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis. Plant Physiol. 170:2264-2277. 

10.    Han M, Wu W, Wu W-H, Wang Y* (2016) Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol Plant. 9:437-446.

11.    Wang Y, Wu W-H* (2015) Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Curr. Opin. Plant Biol. 25:46-52.

12.    Zou J-J, Li X-D, Ratnasekera D, Wang C, Liu W-X, Song L-F, Zhang W-Z, Wu W-H*(2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisicacid-mediated signaling and H2O2homeostasis in stomatal guard cells under drought stress. Plant Cell. 27:1445-1460.

13.    Su T, Xu Q, Zhang F-C, Chen Y, Li L-Q, Wu W-H, Chen Y-F* (2015) WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. Plant Phsyiol. 167:1579-1591.

14.    Li J, Long Y, Qi G-N, Li J, Xu Z-J, Wu W-H, Wang Y* (2014) The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell. 26:3387-3402.

15.    Feng C-Z, Chen Y, Wang C, Kong Y-H, Wu W-H, Chen Y-F* (2014) Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3ABI4, and ABI5 during seed germination and early seedling development. Plant J. 80:654-668.

16.    Wang H, Xu Q, Kong Y-H, Chen Y, Duan J-Y, Wu W-H, Chen Y-F* (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol. 164:2020-2029.

17.    Liu W-X, Zhang F-C, Zhang W-Z, Song L-F, Wu W-H, Chen Y-F* (2013) Arabidopsis Di19 functions as a transcription factor and modulates PR1PR2, and PR5 expression in response to drought stress. Mol. Plant. 6:1487-1502.

18.    Wang Y and Wu W-H* (2013) Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 64:451-476.

19.    Liu L-L, Ren H-M, Chen L-Q, Wang Y and Wu W-H* (2013) A protein kinase, CIPK9, interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in ArabidopsisPlant Physiol. 161:266-277.

20.    Ren X-L, Qi G-N, Feng H-Q, Zhao S, Zhao S-S, Wang Y and Wu W-H* (2013) Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in ArabidopsisPlant J. 74:258-266.

21.    Zhao L-N, Shen L-K, Zhang W-Z, Zhang W, Wang Y and Wu W-H* (2013) Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell. 25:649-661.

22.    Zou J-J, Wei F-J, Wang C, Wu J-J, Ratnasekera D, Liu W-X and Wu W-H* (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol. 154:1232-1243.

23.    Wang Y, He L, Li H-D, Xu J and Wu W-H* (2010) Potassium channel a-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res. 20:826-837.

24.    Wang Y and Wu W-H* (2010) Plant sensing and signaling in response to K+-deficiency. Mol. Plant3:280-287.

25.    Chen Y-F, Li L-Q, Xu Q, Kong Y-H, Wang H and Wu W-H* (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 21:3554-3566.

26.    Zou J-J, Song L-F, Zhang W-Z, Wang Yi, Ruan S-L and Wu W-H* (2009) Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J. Integr. Plant Biol. 51:438-455.

27.    Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z and Wu W-H* (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in ArabidopsisPlant Physiol. 148:1201-1211.

28.    Chen Y-F, Wang Y and Wu W-H* (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J. Integr. Plant Biol. 50:835-848.

29.    Ma S-Y and Wu W-H* (2007) AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol. Biol. 65:511-518.

30.    Zhang W, Fan L-M and Wu W-H* (2007) Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol. 143:1140-1151.

31.    Wang X-Y, Chen Y-F, Zou J-J and Wu W-H* (2007) Involvement of a cytoplasmic glyceraldehyde-3-phosphate dehydrogenase GapC-2 in Arabidopsis responses to low-phosphorous stress. Chinese Sci Bull. 52:1764-1770.

32.    Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L and Wu W-H* (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in ArabidopsisCell.125:1347-1360.

33.    Jiang J, Fan L-W and Wu W-H* (2005) Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res. 15:585-592.

34.    Wang Y-F, Fan L-M and Wu W-H* (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol. 136:3892-3904.

35.    Fan L-M, Wang Y-F and Wu W-H* (2003) Outward K+ channels in Brassica chinensis pollen protoplasts are regulated by external and internal pH. Protoplasma. 220:143-152.

36.    Fan L-M, Wang Y-F, Wang H and Wu W-H* (2001) In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J. Exp. Bot. 52:1603-1614.

37.    Zhao S-Q, Lin C, Yang X-H and Wu W-H* (2001) Isolation and genetic analysis of Arabidopsis mutants with low-K+ tolerance. Acta Bot. Sinica. 43:105-107.

38.    Fan L-M and Wu W-H* (2000) External pH regulates the inward K+ channels in Brassica pollen protoplasts. Prog. Nat. Sci. 10:68-73.

39.    Jin X-C and Wu W-H* (1999) Involvement of cyclic AMP in ABA- and Ca2+-mediated signal transduction of stomatal regulation in Vicia fabaPlant Cell Physiol. 40:1127-1133.

40.    Fan L-M and Wu W-H* (1999) Identification and characterization of the inward K+ channel in the plasma membrane of Brassica pollen protoplasts. Plant Cell Physiol. 40:859-865.

41.    Liu P-R and Wu W-H* (1999) Physiological mechanisms of growth-inhibition by concentrated potassium in DunaliellasalinaActa Bot. Sinica. 41:617-623.

42.    Yu C-J and Wu W-H* (1999) Identification and characterization of inward K+-channels in plamsma membrane of Arabidopsis root cortex cells. Sci. in China. 42:307-315.

43.    Zhou X-M and Wu W-H* (1999) Regulation of the inward K+ channels in stomatal guard cells by cytoskeletal microtubules. Chinese Sci Bull. 44:919-922.

44.    Wang X-Q, Wu W-H* and Assmann S (1998) Differential responses of abaxial and adaxial guard cells of broad bean to abscisic acid and calcium. Plant Physiol. 118:1421-1429.

45.    Wang X-Q, Wu W-H* and Zhang J-S (1998) Evidences for regulation of the inward K+ channels by CDPK in Vicia faba guard cells. Acta Bot. Sinica. 40:1001-1009.

46.    Wu W-H and Assmann S* (1995) Is ATP required for K+ channel activation in Vicia guard cells? Plant Physiol. 107:101-109.

47.    Wu W-H* (1995) A novel cation channel in Vicia faba guard cell plasma membrane. Acta Phytophysiologica Sinica. 21:347-354.

48.    Assmann S* and Wu W-H (1994) Inhibition of guard cell inward K+ channels by abscisic acid: Links and gaps in the signal transduction chain. In: Blatt MR, Leigh RA, & Sanders D eds., Membrane Transport in Plant and Fungi: Molecular Mechanisms and Control. The Company of Biologists Limited, Cambridge, England, pp193-202.

49.    Schwartz A, Wu W-H, Tucker E and Assmann S* (1994) Inhibition of ineard K+ channels and stomatal response by abscisic acid: An intracellular locus of phytohormone action. Proc. Natl. Acad. Sci. USA. 91:4019-4023.

50.    Wu W-H and Assmann S* (1994) A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc. Natl. Acad. Sci. USA. 91:6310-6314.

51.    Wu W-H and Assmann S* (1993) Photosynthesis by guard cell chloroplasts of Vicia faba L.: Effects of factors associated with stomatal movement. Plant Physiol. 34:1015-1022.

52.    Berkowitz G* and Wu W-H (1993) Magnesium, potassium flux and photosynthesis. Magnesium Res. 6:257-265.

53.    Wu W-H and Berkowitz G* (1992) K+ stimulation of ATPase activity associated with the chloroplast inner envelope. Plant Physiol. 99:553-560.

54.    Wu W-H and Berkowitz G* (1992) Stromal pH and photosynthesis are affected by electro neutral K+ and H+ exchange through chloroplast envelope ion channels. Plant Physiol. 98:666-672.

55.    Wu W-H and Berkowitz G* (1991) Lidocaine and ATPase inhibitor interaction with the chloroplast envelope. Plant Physiol. 97:1551-1557.

56.    Wu W-H, Peters J and Berkowitz G* (1991) Surface charge-mediated effects of Mg2+ on K+ flux across the chloroplast envelope are associated with regulation of stromal pH and photosynthesis. Plant Physiol. 97:580-587.