QIN, Feng  
Ph.D., Professor
Tel:86-10-62731286 (O);86-10-62733780 (L)
Research Area: Gene cloning and genetic improvement in maize drought tolerance

2004.10 - 2010.05   Post Doc, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
2001.09 - 2004.07   Ph.D., Dept. of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
1998.09 - 2001.07   M.S., Dept. of Agronomy, National Key laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
1994.09 - 1998.07   B.S., Dept. of Agronomy, Huazhong Agricultural University, Wuhan, China

2017.01 to date    Professor, State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing, China
2010.06 - 2016.12  Professor, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China

Research of Special Interest
Research of Special Interest:
Our laboratory mainly focused on plant abiotic stress response and tolerance. Arabidopsis and maize are the main research materials. We aim to understand the gene expression regulation and signal transduction in plant water stress response, and trying to implement the findings into the crop genetic improvement of drought stress tolerance. Besides, through combinatory research strategies of molecular biology, genetics and genomics, our research group is dedicated to identity the natural variation of drought tolerance genes in maize.
Publications      *Correspondence Author
Publications:(*corresponding author, #co-first author)
1. Wang H, Qin F*. Genome wide association study reveals natural variations contributing to drought resistance in crops. Frontiers in Plant Science, 2017, 8:1110.
2. Wang X#, Wang H#, Liu S, Ferjani A, Li J, Yan J, Yang X*, Qin F*. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48: 1233-1241.
3. Ding S#, Zhang B#, Qin F*. Arabidopsis RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation. Plant Cell, 2015, 27: 3228-3244.
4. Mao H, Wang H, Liu S, Li Z, Yang X, Yan J, Li J, Tran LP, Qin F*. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015, 6: 8326.
5. Liu SX, Wang XL, Wang HW, Xin HB, Yang XH, Yan JB, Li JS, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K, Qin F*. Genome-Wide Analysis of ZmDREB Genes and Their Association with Natural Variation in Drought Tolerance at Seedling Stage of Zea mays L. PLoS Genetics, 2013, 9: e1003790.
6. Ma Y, Qin F*, Tran LS*. Contribution of Genomics to Gene Discovery in Plant Abiotic Stress Responses. Molecular Plant, 2012, 5: 1176-1178. IF: 6.5, citation: 15 times
7. Qin F, Sakuma Y, Tran LS , Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, and Yamaguchi-Shinozaki K. Arabidopsis DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress-Responsive Gene Expression. Plant Cell, 2008, 20: 1693-1707.
8. Qin F, Kodaira K, Maruyama K, Mizoi J, Tran L-S P, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K. SPINDLY, a Negative Regulator of GA Signaling, Is Involved in the Plant Abiotic Stress Response. Plant Physiology, 2011, 157: 1900-1913.
9. Qin F, Yamaguchi-Shinozaki K and Shinozaki K. Achievements and Challenges in Understanding Plant Abiotic Stress Response and Tolerance. Plant Cell Physiology, 2011, 52:1569-1582.
10. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran L. P., Shinozaki K and Yamaguchi-Shinozaki K. Regulation and Functional Analysis of ZmDREB2A in Response to Drought and Heat Stresses in Zea mays L. Plant Journal, 2007, 50: 54-69.
11. Qin F, Li J S, Li X H and Corke H. AFLP and RFLP linkage map in coix. Genetic Resources and Crop Evolution, 2005, 52: 209-214.
12. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K and Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiology, 2004, 45: 1042-1052.
13. Jiang YX#, Qin F#, Ma XY, Li YQ, Bai CL and Fang XH. Measuring specific interaction of transcription factor ZmDREB1A with its DNA responsive element at the molecular level. Nucleic Acids Research, 2004, 32: e101.
14. Morimoto K, Mizoi J, Qin F, Kim JS, Sato H, Osakabe Y, Shinozaki K and Yamaguchi-Shinozaki K. Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS One, 2013, 8: e80457.
15. Morimoto K#, Ohama N#, Kidokoro S, Mizoi J, Takahashi F, Todaka D, Mogami J, Sato H, Feng Qin, Kim JS, Fukao Y, Fujiwara M, Shinozaki K, Yamaguchi-Shinozaki K, BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis, Proceedings of the National Academy of Science of the United States of America, 2017, 3: E8528-E8536.
16. Kodaira KS, Qin F, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis C2H2 Zinc-Finger Proteins AZF1 and AZF2 Negatively Regulate ABA-Repressive and Auxin-Inducible Genes under Abiotic Stress Conditions. Plant Physiology, 2011, 157: 742-756.
17. Tran LS, Urao T, Qin F, Maruyam K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2007, 104: 20623-20628.
18. Sakuma Y, Maruyama K, Qin F, Osakabe Y., Shinozaki K and Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress- and heat-stress-responsive gene expression. Proceedings of the National Academy of Science of the United States of America, 2006, 103: 18822-188227.
19. Sakuma Y, Maruyama K, Osakabe, K, Qin F, Seki, M, Shinozaki, K and Yamaguchi-Shinozaki, K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18: 1292-1309.
20. Yoshida, T, Sakuma, Y, Todaka, D, Maruyama, K, Qin, F, Mizoi, J, Kidokoro, S, Fujita, Y, Shinozaki, K and Yamaguchi-Shinozaki, K. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun.2008, 368: 515-521.
21. Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant Journal, 2007, 49: 46-63.
22. Reis RR, Andrade Dias Brito da Cunha B, Martins PK, Martins MT, Alekcevetch JC, Chalfun-Júnior A, Andrade AC, Ribeiro AP, Qin F, Mizoi J, Yamaguchi-Shinozaki K, Nakashima K, Carvalho Jde F, de Sousa CA, Nepomuceno AL, Kobayashi AK, Molinari HB. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Science, 2014, 221-222: 59-68.
23. Sato H , Mizoi J , Tanaka H , Maruyama K, Qin F , Osakabe Y , Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Dpb3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell, 2014, 26:4954-4973.