FACULTY

Chinese
Xu, Mingliang,PhD,Professor
Tel:86-10-62733166 (O); 86-10-62733115 (L)
E-mail:
mxu@cau.edu.cn
Research Interest: Maize disease resistance and molecular breeding  

EDUCATION:
1993.9-1996.7    Ph.D., Fudan University, Shanghai, China
1984.9-1987.7    M.S., Jiangsu Agricultural College, Yangzhou, China
1980.9-1984.7    B.S., Zhejiang Agricultural University, Ningbo, China

EMPLOYMENT:
2003.9-present  Professor, China Agricultural University, Beijing, China
1987.9-2003.9  Teaching assistant, Lecturer, Associated Professor, Professor, Yangzhou University,  Yangzhou, China
1997.2-1999.2  Postdoctoral Associate, University of Hohenheim, Germany
1999.2-2002.6  Postdoctoral Associate, University of Illinois, USA 

Research of Special Interest
Research interest: Maize disease resistance and molecular breeding
Maize disease is one of the most important limiting factors for corn production in China, causing >10% yield loss of the total output annually. In recent years, with the frequent occurrence of extreme weather, accumulation of pathogenic microbes in soil, together with long-term continuous cropping, maize diseases have become ever-increasing serious. Thus, it is particularly important and urgent to clone disease resistance genes and to understand their molecular mechanisms, so as to genetically improve disease resistance through molecular breeding in maize.
1. Identification of quantitative disease resistance genes in maize
With an aim to relieve the most destructive maize diseases in China, we have cloned nine quantitative disease resistance (QDR) genes: ZmWAK (head smut), ZmCCT, and ZmUgAD (stalk rot), ZmAuxRP1 (stalk rot and ear rot), ZmTrxh and ZmABP1 (dwarf mosaic virus disease), ZmGDI (rough dwarf virus disease), and ZmWAK-RLK1 and ZmCAMK (grey leaf spot). At present, we mainly focus on the mining of disease-resistant QTR genes for ear rot.
2. Molecular mechanisms underlying QDR resistance to maize diseases
We found the QDR genes differ greatly from the typical R gene in resistance mechanisms. For example, ZmWAK-mediated head smut resistance exhibits unique temporal and spatial characteristics, as disease symptoms mainly occur in ears at the filling stage, while ZmWAK is induced in the seedling mesocotyl to prevent the pathogen from reaching the ear meristem. The main QTL gene ZmCCT for maize resistance to stalk rot is in a “primed” state. Upon pathogen challenge, ZmCCT is instantly activated to trigger the downstream immune responses. ZmAuxRP1 coordinates the biosynthesis of auxin and benzoxazinoid, thus regulating the balance between growth and defense. Two genes, ZmTrxh and ZmABP1, conferring resistance to maize dwarf mosaic virus disease have molecular chaperone functions, which bind to the viral proteins in the early and late infection stages, respectively, to prevent viral proteins from recruiting the host target proteins, thereby achieving disease resistance.
3. Molecular breeding of disease resistance in maize
With the availability of the QDR genes, we screened elite natural resistance alleles in various germplasm resources and developed molecular markers. Each resistance gene has been introduced into a set of elite inbred lines to create resistance donors to accelerate marker-assisted selection. As expected, maize plants carrying the disease resistance gene had a significant improvement in resistance, and thus QDR genes are valuable in corn production. Through IP patent transfer, cooperation and joint research, the QDR genes have been widely applied to the breeding of maize disease resistance in China, creating numerous new disease-resistant materials.
4. Study on traits related to corn mechanical harvesting
With the rapid development of China's society, labor costs are getting higher and higher, and modern agriculture is bound to become more mechanization and intensification. In order to promote mechanical harvesting, resistance to lodging, high-density tolerance, and disease resistance are among the main objectives of future corn breeding. Therefore, we carry out researches on ear rot resistance, photoperiod insensitivity, stem strength, and grain dehydration, with an attempt to develop new generation of maize varieties suitable for mechanical harvesting. 
Publications      *Correspondence Author

Publications
 (*Corresponding author; #These authors contributed equally)

1. Ye JR#, Zhong T#, Zhang DF#, Ma CY, Wang LN, Yao LS, Zhang QQ, Zhu M, Xu ML*. 2018. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk-rot disease resistance in maize. Molecular Plant 12: 360-373

2. Leng PF, Lübberstedt T, Xu ML*. 2017. Genomics-assisted breeding-A revolutionary strategy for crop improvement. Journal of Integrative Agriculture, 16: 2674-2685

3. Li YP, Xu ML*. 2017. CCT family genes in cereal crops: A current overview. Crop Journal, 5:449-458.

4. Li YP, Tong LX, Deng LL, Liu QY, Xing YX, Wang C, Liu BS, Yang XH, Xu ML*. 2017. Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. Theor Appl Genet 130: 2587-2600.

5. Leng PF#, Ji Q#, Asp T, Frei, UK, Ingvardsen CR, Xing YZ, Studer B, Redinbaugh M, Jones M, Gajjar P, Liu SS, Fei Li, Pan GT, Xu ML*, Lübberstedt T*. 2017. Auxin Binding Protein 1 Reinforces Resistance to Sugarcane Mosaic Virus in Maize. Molecular Plant 10: 1357-1360

6. Wang C#, Yang Q#, Wang WX#, Li YP, Guo YL, Zhang DF, Ma XN, Song W, Zhao JR, Xu ML*. 2017. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytologist 215: 1503-1515

7. Ma CY, Ma XN, Yao LS, Liu YJ, Du FL, Yang XH, Xu ML*. 2017. qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Theor Appl Genet 130: 1723–1734

8. Zhang N, Zhang BQ, Zuo WL, Xing YX, Konlasuk S, Tan GQ, Zhang QQ, Ye JR, Xu ML*. 2017. Cytological and Molecular Characterization of ZmWAK-Mediated Head-Smut Resistance in Maize. Plant-Microbe Interact 30:455-465

9. Yang Q, Balint-Kurti P*, Xu ML*. 2017. Quantitative disease resistance: dissection and adoption in maize. Molecular Plant, 10: 402-413

10. Liu QQ, Liu HH, Gong YQ, Tao YF,Jiang L, Zuo WL, Yang Q, Ye JR, Lai JS, Wu JY, Lübberstedt T, Xu ML*. 2017. An Atypical Thioredoxin Imparts Early Resistance to Sugarcane Mosaic Virus in Maize. Molecular Plant, 10:483-497.

11. Zhao XR, Ye JR, Lai Wei L, Zhang N, Xing YX, Zuo WL, Chao Q, Tan GQ, Xu ML*. 2015. Inhibition of the spread of endophytic Sporisorium reilianum renders maize resistance to head smut. The Crop Journal, 3: 87-95

12. Konlasuk S. Xing YX. Zhang N. Zuo WL. Zhang BQ. Tan GQ. Xu ML*. 2015. ZmWAK, a quantitative resistance gene to head smut in maize, improves yield performance by reducing the endophytic pathogen Sporisorium reiliana. Mol Breeding, 35:174. DOI 10.1007/s11032-015-0325-2

13. Zuo WL#, Chao Q#, Zhang N#, Ye JR, Tan GQ, Li BL, Xing YX, Zhang BQ, Liu HJ, Fengler A. Kevin, Zhao J, Zhao XR, Chen YS, Lai JS, Yan JB, Xu ML*. 2015. A maize wall-associated kinase confers quantitative resistance to head smut. Nature Genetics, 47:151-157

14. Xu L, Zhang Y, Shao SQ, Chen W, Tan J, Zhu M, Zhong T, Fan XM and Xu ML*. 2014. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC Plant Biology, 14:230

15. Zhang Y, Luebberstedt Thomas, Xu ML*. 2013. The Genetic and Molecular Basis of Plant Resistance to Pathogens. Journal of Genetics and Genomics 40: 23-35.

16. Hou J, Xing YX, Zhang Y, Tao YF, Tan GQ, Xu ML*. 2013. Identification of quantitative trait loci for resistance to Curvularia leaf spot of maize. Mydica, 58:266-283

17. Ye JR, Guo YL, Zhang DF, Zhang N, Wang C, Xu ML*. 2013. Cytological and Molecular Characterization of QTL-qRfg1 Which Confers Resistance to Gibberella Stalk-Rot Disease in Maize. Mol. Plant-Microbe Interact. 26:1417-1428.

18. Yang Q#, Li Z#, Li WQ#, Ku LX#, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH*, Yan JB*, Yang XH*, Xu ML*. 2013. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the post-domestication spread of maize. Proc Natl Acad Sci. 110: 16969–16974

19. Tao YF, Liu QC, Wang HH, Zhang YJ, Huang XY, Wang BB, Lai JS, Ye JR, Liu BS and Xu ML*. 2013. Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease. BMC Plant Biology, 13:145

20. Tao YF, Jiang L, Liu QQ, Zhang Y, Zhang R, Ingvardsen RC, Frei UK, Wang BB, Lai JS, Lübberstedt T and Xu ML*. 2013. Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biology, 13:162

21. Zhang Y, Xu L, Fan XM, Tan J, Chen W, Xu ML*. 2012. QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet 125:1797-1808.

22. Yang Q, Zhang DF, Xu ML*. 2012. A Sequential Quantitative Trait Locus Fine-Mapping Strategy Using Recombinant-Derived Progeny. Journal of Integrative Plant Biology, 54: 228–237

23. Ji Q, Zhang MJ, Lu JF, Wang HM, Lin B, Liu QQ, Chao Q, Zhang Y, Liu CX, Gu MH, Xu ML*. 2012. Molecular Basis Underlying the S5-Dependent Reproductive Isolation and Compatibility of Indica/Japonica Rice Hybrids. Plant Physiology, 158: 1319–1328

24. Ye JR, Xu ML. 2011. ActinbundlerPLIM2s are involved in the regulation of pollen development and tube growth in Arabidopsis. Journal of Plant Physiology 169:516-522

25. Zhang DF, Liu YJ, Guo YL, Yang Q, Ye JR, Chen SJ, Xu ML*. 2012 Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet, 124:585–596.

26. Zhao XR, Tan GQ, Xing YX, Wei L, Chao Q, Zuo WL, Lubberstedt T, Xu ML*. 2012. Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breeding, 30:1077–1088.

27. Ji Q, Lu JF, Chao Q, Zhang Y, Zhang MJ, Gu MH, Xu ML*. 2010. Two sequence alterations, a 136-bp InDel and an A/C polymorphic site, in the S5 locus are associated with compatibility of indica/japonica hybrid in rice. J. Genet. Genomics 37:57-68

28. Yang Q, Yin GM, Guo YL, Zhang DF, Chen SJ, Xu ML*. 2010. A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet, 121:673-687

29. Lai JS#*, Li RQ#, Xu X#, Jin WW#, Xu ML#, Zhao HN, Xiang ZK, Song WB, Ying K, Zhang M, Jiao YP, Ni PX, Zhang JG, Li D, Guo XS, Ye KX, Jian M, Wang B, Zheng HS, Liang HQ, Zhang XQ, Wang SC, Cheng SJ, Li JS, Fu Y, Springer NM, Yang HM, Wang JA, Dai JR, Schnable PS*, and Wang J*. Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 2010, 42:1027-1030.

30. Usarowska A, Dionisio G, Sarholz B, Piepho HP, Xu ML, Ingvardsen CR, Wenzel G, Lübberstedt T*. 2009. Validation of candidate genes putatively associated with resistance to   SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC Plant Biology 2009, 9:15 doi:10.1186/1471-2229-9-15

31. Soria-Guerra R, Xu ML, Korban S*. 2008. Transgenic apple lines carrying vfa genes in tandem for resistance to apple scab. Hortscience 43:1156-1156.

32. Chen YS, Chao Q, Tan GQ, Zhao J, Zhang MJ, Ji Q, and Xu ML*. 2008. Identification and   fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet,117:1241.

33. Chen JJ, Ding JH, Ouyang YD, Du HY, Yang JY, Cheng K, Zhao J, Qiu SQ, Zhang XL, Yao JL, Liu KD, Wang L, CG Xu, Li XH, Xue YB, Xia M, Ji Q, Lu JF, Xu ML, and Zhang QF*. 2008. A tri-allelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci 105: 11436-11441

34. Jiang L, Ingvardsen CR, Lubberstedt T, Xu ML*. 2008. The Pic19 NBS-LRR gene family members are closely linked to Scmv1, but not involved in maize resistance to sugarcane mosaic virus. Genome, 51:673-684.

35. Chen SH, Yang Y, Shi WW, Ji Q, He F, Zhang ZD, Cheng ZK, Liu XN, and Xu ML*. 2008.    
Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20: 1850-1861

36. Wen WE, Li GQ, He ZH, Yang WY, Xu ML, Xia XC*. 2008. Development of an STS marker closely linked to Yr26 against wheat stripe rust using the resistance gene-analog polymorphism (RGAP) technique. Mol Breed 22:507-515

37. Wang YJ, Yin GM, Yang Q, Tang JH, Lu XM, Korban SS, Xu ML*. 2008. Identification and isolation of Mu-flanking fragments from maize. J of Genetics and Genomics 35: 207-213

38. Malnoy M#, Xu ML#, Borejsza-Wysocka E, Korban SS*, and Aldwinckle HS*. 2008. Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant-Microbe Interact 21:448-458.

39. Shi WW, Yang Y, Chen SH, Xu ML*. 2008. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22:185-192.

40. Xiao WK, Zhao J, Fan SC, Li L, Dai JR, Xu ML*. 2007. Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theor Appl Genet. 115:501-508.

41. Wang GX, Chen Y, Zhao JR, Li L, Korban SS, Wang FG, Dai JR, Xu ML*. 2007. Mapping of defense response gene homologues and their association with resistance loci in maize. Journal of Integrative Plant Biology 49:1580-1598.

42. Han YP, Gasic K, Sun FJ, Xu ML, Korban SS*. 2006. A gene encoding starching branching enzyme I (SBEI) in apple (Malus × domestica, Rosaceae) and its phylogenetic relationship to Sbe genes from other angiosperms. Molecular Phylogenetics and Evolution 43:852-863.

43. Farrar K, Asp T, Lübberstedt T, Xu ML, Christiansen C, Thomas A, Humphreys M, Donnison I*. 2006. Construction and utilization of two Lolium perenne BAC libraries. Mol Breed. 19:15-23.

44. Chen SH, Wu J, Yang Y, Shi WW, Xu ML*. 2006. The fgr gene responsible for rice fragrance was restricted within 69kb. Plant Science 171:505-514.

45. Xiao WK, Xu ML*, Zhao JR, Wang FG, Li JS, Dai JR. 2006. Genome-wide isolation of resistance gene analogs in maize (Zea mays L.) Theor Appl Genet. 113:63-72.

46. He Y, Han YP, Jiang L, Xu CW, Lu JF, Xu ML*. 2006. Functional analysis of starch-synthesis genes in determining rice eating and cooking qualities. Mol Breed 18:277-290.

47. Ji Q, Lu JF, Chao Q, Gu MH, Xu ML*. 2005. Delimiting a rice wide-compatibility gene S5n to a 50 kb region. Theor Appl Genet 111: 1495- 1503.

48. Xu ML, Li X and Korban SS*, 2004. DNA methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109:899-910.

49. Xu ML and Korban SS*, 2004. Somatic variation plays a key role in driving the evolution of the Vf gene family that confer resistance to apple scab disease. Molecular Phylogenetics and Evolution 32:57-65.

50. Huaracha, E.M., Xu ML, K. Gasic, E. Pauwels, A. van den Putte, J.W. Keulemans, and S.S. Korban*. 2004. Phenotypic reaction and genetic analysis using AFLP-derived SCARs for resistance to apple scab. J. Phytopathology 152:260-266.

51. Han YP, Xu ML*, Liu XY, Yan CJ, Korban SS, Chen XL and Gu MH.2004. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science 166:357-364.

52. Liu XY, Gu MH, Han YP, Ji Q, Lu JF, Gu SL, Zhang R, Li X, Chen JM, Korban S S and Xu ML*. 2003. Developing gene-tagged molecular markers for functional analysis of starch-synthesizing genes in rice (Oryza Sativa L.). Euphytica 135:345-353.

53. Xu ML and Korban SS*. 2003. Positional cloning of the apple scab resistance gene Vf. Proc. XXVII Intl. Hort. Cong. Acta Hort. 625:79-87.

54. Carr J, Xu ML and Korban SS*. 2003. Estimating genetic diversity in New Guinea impatiens. Proc. XXVII Intl. Hort. Cong. 623:161-168.

55. Dußle C, Quin M, Melchinger AE, Xu ML and Luebberstedt T*, 2003. Saturation of two chromosome regions conferring resistance to SCMV by targeted BSA. Theor Appl Genet 106:485-493.

56. Carr, J., Xu ML, J.W. Dudley, and S.S. Korban*. 2003. AFLP analysis of genetic variability in New Guinea impatiens. Theor Appl Genet 106: 1509-1516.

57. Huaracha E, Xu ML, Pauwels E, Keulemans W and Korban SS*, 2002. Comparison of marker-assisted selection and phenotypic selection for apple scab resistance in a set of apple progenies Theor Appl Genet 108:274-479.

58. Li XQ, Xu ML and Korban SS*, 2002. DNA methylation profiles differ between field- and in vitro-grown leaves of apple. Journal of plant physiology 159:1229-1234.

59. Xu ML and Korban SS*, 2002. A cluster of four active receptor-like genes reside in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995-2006.

60. Dußle CM, Quint M, Xu ML, Melchinger AE and Luebberstedt T*, 2002. Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers. Theor Appl Genet 105: 1190-1195.

61. Quint M, Mihaljevic R, Dußle CM, Xu ML, Melchinger AE and Luebberstedt T*, 2002. Genetic mapping of candidate genes for SCMV resistance in maize and conversion into RGA-CAPS markers. Theor Appl Genet 105:355-363.

62. Xu ML and Korban SS*, 2002. AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant Mol Biology 50: 803-818.

63. Korban SS and Xu ML*, 2002. Going after the scab resistance gene. Trans. Ill. Hort. Soc. 134:15-20.

64. Xu ML, Korban SS, Song JQ, and Jiang JM, 2002. Constructing a bacterial artificial chromosome library of the apple cultivar GoldRush. Acta Hort. 595:103-112.

65. Xu ML, Song JQ, Cheng ZK, Jiang JM and Korban SS*, 2001. A bacterial artificial chromosome (BAC) library of Malus floribunda 821 and contig construction for positional cloning of the apple scab resistance gene Vf. Genome 44:1104-1113.

66. Xu ML, Huaracha E and Korban SS*, 2001. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome 44:63-70.

67. Xu ML, Li XQ and Korban SS*, 2000. AFLP-based detection of DNA methylation. Plant Mol Biol Rep 18: 361-368.

68. Xu ML and Korban SS*, 2000. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor Appl Genet 101: 844-851.

69. Xu ML, Melchinger AE and Luebberstedt T*, 2000. Origin of Scm1 and Scm2 - two loci conferring resistance to sugarcane mosaic virus (SCMV) in maize. Theor Appl Genet 100: 934-941.

70. Luebberstedt T, Xia XC, Xu ML, Kuntze L, Melchinger AE*, 1999. Inheritance of resistance to SCMV and MDMV in European maize. In: Proc. of the XVth EUCARPIA 1998 General Congress: Genetics and breeding for crop quality and resistance, G.T.S. Mugnozza (ed.), pp. 241-250 Kluwer Academic Publishers, Dordrecht, The Netherlands

71. Xu ML, Melchinger AE, Xia XC and Luebberstedt T*, 1999. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet 261: 574-581.

72. Xu ML, Melchinger AE and Luebberstedt T*, 1999. Species-specific detection of the maize pathogens Sporisorium reiliana and Ustilago maydis by dot blot hybridization and PCR-based assays. Plant Dis 83: 390-395.